The Role of Open Source Software in Program
Analysis for Reverse Engineering

Taher Ahmed Ghaleb
Information and Computer Science Department
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
Email: g201106210@kfupm.edu.sa

Abstract—Program analysis is the process of statically or
dynamically retrieving the structure and behavior of software
systems. Static analysis solely relies on the availability of source
code of computer programs, while dynamic analysis captures
program information using execution traces during program
runtime. The entire process is called software reverse engineering,
where the extracted information could eventually be visualized
to facilitate program comprehension for the sake of learning,
maintenance, etc. Open source software, in this context, plays
a vital role in developing, enriching, and validating program
analysis techniques. In this paper, we show and discuss how open
source software projects significantly contribute to the develop-
ment, evolution, and validation of program analysis techniques
as well as enriching reverse-engineered diagrams with useful and
meaningful information, even for those techniques that rely on
dynamic analysis.

Keywords—Reverse engineering; Program analysis;
Source Software; Software Validation and Evaluation

Open

I. INTRODUCTION

To retrieve the structure or understand the behavior of soft-
ware systems, it is important to employ some kind of program
analysis [1]. If software source code is available, then static
analysis could be carried out [2], while dynamic analysis can
work even if the source code does not exist [3]. However, some
dynamic techniques do require source code to be present at the
time of analysis in order to conduct some instrumentation that
could assist in collecting information about program behavior
during runtime [4]. This means that the availability of program
source code is essential for most program analysis techniques,
especially when it comes to validating how such techniques
perform if applied to real-world systems.

On the other hand, open source software plays an important
part in the development and evolution of program analysis
tools, and this is maily expressed by the high reliance on open
source compiler frameworks [5]. In the literature, various pro-
gram analysis techniques have been developed on top of open
source compilers, which help in gathering Abstract Syntax
Trees (ASTs) of programs that hold their entire design. After
doing so, software structure and behavior may be deduced
from such ASTs using specialized techniques for generating
useful artifact representations.

What motivated us to write this paper is the noticed heavy
demand for open source projects in almost all program analysis

978-1-5090-4580-8/16/$31.00 (©2016 IEEE

tools, even by dynamic and closed-source techniques. This
implies that closed-source software systems are no longer
useful in this matter. Therefore, this paper explores the need
for and the reasons behind using open source software in the
area of program analysis for reverse engineering. We study
various program analysis approaches of the three main types,
namely static, dynamic, and hybrid, and then we discuss their
dependence on open source software, either in the development
or evaluation.

The rest of this paper is organized as follows. Section II
introduces and analyzes different techniques of program anal-
ysis. In Section III, we present some related concepts about
open source technology and discuss how program analysis
techniques demand the use of open source projects as a basis
for their development, functionality, or validation. Finally,
section IV concludes the paper and suggests the possible future
work.

II. STATE OF THE ART

This section presents preliminaries about reverse engineer-
ing and the state-of-the-art techniques that support it. In this
contexts, static, dynamic, and hybrid techniques that facilitate
the reverse engineering of software structure and/or behavior
are presented.

A. Reverse Engineering

Reverse engineering of software artifacts is the process of
recovering the structure or behavior of software systems and
exporting it in formats that can be used for maintenance or
learning. Reverse engineering is mainly composed of a set of
processes, including the static or dynamic analysis of programs
to collect relevant structural or behavioral information, and
the transformation of such gathered information into higher-
level models [6]. The resulting representations can actually
be used for various purposes, such model checking, program
comprehension, performance monitoring, etc.

Usually, reverse engineering is conducted through heuris-
tics, which may, subsequently, result in generating imprecise
representations of program control flow of behavior. Although
it is important to provide models reflecting programs precisely,
users may sometimes need to focus on understanding a specific
aspect of the program. Therefore, hiding trivial information

from the produced output can sometimes reduce their com-
plexity, which can offer better understanding of software
artifacts

Performance, usability, and scalability are of the main
characteristics of reverse engineering techniques, where trade-
offs can occur among them. Producing thorough models, for
example, gives a comprehensive overview of the software
objects and interactions, but, at the same time, requires higher
memory usage and may even negatively affect program un-
derstating. In addition, reverse engineering techniques might
not be effectively applicable to large and complex systems as
a whole, due primarily to a large number of infeasible paths
present throughout their interprocedural control flows, which
are known to be hard to identify in general [7].

B. Program Analysis Techniques

Program analysis is the set of processes concerned with
analyzing different aspects of software programs for various
purpose. In this paper, we focus on program analysis tech-
niques that aim to reverse engineer program behavior and
interactions. These techniques are divided into three categories
of analysis. First, static analysis, which relies solely on the
source code of the software system needed to be analyzed.
Second, dynamic analysis, in which execution traces of the
program are captured and analyzed during program runtime.
Third, hybrid analysis, which combines both kinds of analysis
within the same technique, which allows producing more
useful information about program behavior.

1) Static Analysis: Static analysis is an exploration of
software artifacts relying on the source code of the program
in order to extract the structure and behavior that software
systems including the control flow and all interactions between
system objects [2]. Static analysis actually works without
requiring the intended software systems to be executed [8]. It
essentially works by parsing program source files and logging
all information about interactions between internal system
components. It firstly heads to the main entry point of the
program (e.g., main method), and then start analyzing and
keeping track of all object construction operations and their
method invocations, taking into account all constructs that
control the flow (e.g., 1 f, for, etc.). The gathered information
about program behavior is normally logged into memory as
interaction traces to be visualized at a later stage.

Although static analysis is efficient, it does require to have
open source software systems to functions, which may be the
case for many software systems. On the other hand, it can
only provide an approximation of the real program runtime,
which may be caused by missing the dynamic features of
programs, which itself may lead to producing less expressive
models. Dynamic features of programs written in object-
oriented languages may include dynamic class loading, multi-
users, and multi-threading. However, static analysis can some-
times show an expectation of how such kind of interactions
would be executed in the program at runtime. Thus, it was
highly recommended in [9] and [10] to incorporate behavioral
information through the static analysis of source code due to

its importance and efficiency in covering different aspects of
program control flow.

There have been various static techniques of program anal-
ysis in the literature. each technique was developed to achieve
a specific goal of program understanding. For example, Lu et
al. [11] studied the conformance and relationships the different
sequence diagrams generated by their technique. On the other
hand, Korshunova et al. [12] presented a tool that can statically
reverse engineer class, sequence, and activity diagrams of
any given C++ system by parsing its source code and then
extracting its Abstract Syntax Tree (AST) in XMI files [13],
which represent UML elements in an eXtensible Markup
Language (XML) format. Rountev et al. [14] could introduce
two simple extensions to the UML sequence diagram whose
purpose was to precisely capture the intraprocedural control
flow of programs. They designed a generalized break fragment
that enables exiting from a certain surrounding fragment, in
addition to an approach for mapping the control flow graph
(CFG) to UML and handling any reducible exception-free
CFG.

2) Dynamic Analysis: Unlike static analysis, dynamic anal-
ysis can work with the absence of program source code
but requires programs to be executed instead [3]. Having
source code is optional in dynamic analysis, but having it
can facilitate injecting tracing functionality into programs by
some techniques. Commonly, dynamic analysis-based depend
on (customized) debuggers and profilers that can supply them
with the required information about program behavior [15].
Although it can recover precise information about the actual
behavior of a system, it is challenged by the coverage problem.
A single run of the program can only explore a sample
execution trace, which typically covers a few interactions out
of many more possible ones. Augmenting coverage requires
multiple executions of the program with varying parameters
representing different execution scenarios, which will produce
many diagrams causing another problem concerning how to
combine them [4].

Moreover, control flow is not captured during the dynamic
tracing [16]. It, therefore, lacks the ability to capture in-
formation about whether these interactions passed through
conditional alternatives, repetitions, or recursive calls. Notice
that such information can simply be collected if static analysis
is employed. To allow dynamic analysis to identify control
flow, it is important to instrument source code (or sometimes
bytecode) to inject certain scripts for tracing the changes in the
flow of the program. Such scripts can do their job while the
program execution and hand-by-hand work collaborate with
dynamic analysis [4]. Another issue with dynamic analysis is
that it can only work with complete software systems, rather
than software fragments, components, or subsystems. This
issue can be resolved by instrumenting subsystems by auto-
matically employing program stubs (e.g. a specially crafted
main class) to enable tracing executions of a certain program
component [17].

To minimize the complexity of diagrams that are gener-
ated by dynamic analysis, Jayaraman et al. [18] proposed

a method for summarizing the resulting sequence diagrams
using state diagrams after multiple runs, but user participa-
tion was required in the summarization process. Briand et
al. [4] introduced a dynamic analysis technique that addresses
interactions of distributed systems where messages between
different objects at different network nodes can be identified.
Oechsle et al. [19] targeted students by proposing JAVAVIS to
help them understand the interactions executed at runtime of
their small-sized programs. In [7], a dynamic monitoring tool
called Kieker was introduced to continuously (or on-demand)
observe the behavior of Java programs, and its performance
was evaluated in [20]. In [21], reducing sequence diagram
size was the main goal, and that was achieved by removing
the less important details and methods from them with the
help of their previous tool Amida [22]. Ziadi et al. [23] also
introduced a technique that performs dynamic analysis of Java
programs based on their bytecode, and they applied the k-tail
algorithm [16] to merge interactions that relate to the same
fragment.

3) Hybrid Analysis: We have noticed that recent techniques
started to focus on combining both aforementioned types of
analysis together to produce a new compound program anal-
ysis called hybrid analysis. This kind of analysis is relatively
effective and precise as the results produced from one analysis
is complemented by the other’s results [24], [25]. In other
words, hybrid techniques exploit the power of both kinds
of analysis while alleviating their weaknesses. Nevertheless,
this kind of analysis is generally considered to be time-
consuming as the instrumentation overhead increases with the
implementation of the two types of analysis [24]. In addition,
merging the multiple diagrams generated by both analyses
into a single comprehensive diagram to represent the entire
program behavior is a challenge as well [9].

Labiche et al. [24] presented a reverse engineering tech-
nique that combines both static and dynamic analyses aiming
to reduce the instrumentation overhead required by the dy-
namic analysis, by collecting only a small amount of runtime
information that cannot be derived from static analysis, like
threads. Myers et al. [9] introduced a hybrid technique to
improve the visual appearance of the generated sequence
diagrams by introducing an algorithm that compacts a large
amount of information of call/message interactions between
system objects. Srinivasan et al. [26] also introduced a com-
bined technique that merges and optimizes diagrams generated
by both kinds of analysis according to object signatures and
line numbers.

Another trend of reverse engineering techniques focuses on
web-based applications [27], [28], [29]. In web-based appli-
cations, techniques were usually used to represent web pages
as objects in the resulting diagrams, while the transactions
between them represent the interaction messages. From a
different perspective, modeling the behavior of mobile ap-
plications was also investigated in the literature, either using
the UML standard or relevant extensions [30], [31]. Huang et
al. [32] proposed a tool for modeling the stealthy behavior
of Android application by detecting the semantic mismatch

between the program behavior and user interface. Another
work was proposed in [33] to enhance the understandability
of the behavior of mobile applications by combining different
artifacts, from different sources, to obtain a thorough and
accurate model.

III. THE ROLE OPEN SOURCE SOFTWARE

Open Source Software (OSS) development has gained a
massive importance in software technology nowadays. Basi-
cally, open source projects are developed by teams of persons
or by individuals. At present, several reputed software compa-
nies like Microsoft and Sun have been attracted to this trend of
development due to its power to improve products’ usability
and extendability of the products [34], and to solve various
problems of the companies, like the acceleration of develop-
ment and evolution [35] and the enhancement of reliability
[36]. In 1984, Stallman proposed the idea of Free Software
Foundation, which then was confirmed in the Open Source
Definition in 1997 ! along with open source licenses, such as
GNU General Public License (GPL), Common Development
and Distribution License (CDDL), etc. Bonaccorsi et al. [37]
presented the initiatives behind the success of open source
software.

Web-based repositories of open source software projects
play a vital role in the distribution of the source code of
open source projects. GitHub?, SourceForge® and CodePlex*
are among the top and most popular alternatives of such a
service. It is common to have them on more than one website
to increase the availability and usability. Users through these
websites can store, manage, maintain and deploy source code
of their projects online easily. In addition, distributed revision
control, bug tracking, and shared development are examples of
the features that can be provided by such services. In relevance
to open source compilers, most providers of deploy their open
source compilers in these web-based hosting.

A. In the development of program analysis techniques

Building a parser to parse and analyze programs of a
certain programming language is somewhat complicated and
can lead to having wrong representations of some of the
syntactic rules of that language, especially if that was based
on textual analysis. For instance, Java grammar is well-known
and there exist many open source parsers and corresponding
compilers that can assist in correctly and efficiently reading
Java programs. Therefore, such parsers can be utilized to build
program analysis tools to retrieve the required information
about analyzed programs.

Having an open source parser or compiler does not guar-
antee the constructions of a program analysis tool easily.
Program analysis tools have different objectives and so have
open source parsers and compilers. It may happen that some
of the available open source parsers are not extensible, or at

lopensource.org
2github.com
3sourceforge.net
4codeplex.com

least not easy to be extended. This means that, in order to
customize such parsers, you will need to understand its current
functionality and then make the proper adjustments that serve
your prospective features. This means that you would follow a
non-modular way to accomplish your technique since various
parts of the base parser/compiler will be modified.

On the other hand, the literature is full of compilers that
facilitate the creation of extensions of programming languages’
parsers. This means that users can utilize the extending func-
tionality of a certain extensible compiler to add the required
functionality of the analysis tools. This includes: determining
the set of constructs to be retrieved, injecting appropriate
logging operations, the passes at which programs should
be analyzed, and specifying the intermediate representation
holding the AST. Take into mind that some dynamic program
analysis tools also rely on open source software even though
they actually target executable software.

The final product after completing the implementation of
a program analysis technique would either be open or closed
source, which concludes that building a tool on top of another
open source tool or framework does not necessarily produce
an open source product. It is the owner decision to deploy
the constructed tool under a proprietary copyright or an open
source license.

As we can see in Table I, every single program analysis
depends on another technique. That dependent technique can
either be developed by the same authors (e.g., [21], [24], and
[38]) or by others. The authors of techniques proposed in [9]
and [11] did not provide information about any dependency
on other techniques or tools, and thus we assumed that their
used techniques are not open source. In addition, the tools that
are unclear whether they are open source or not and the ones
are not available online are assumed to be closed source. It
can be observed that only a third of these techniques were
built on top of open source tools, while the rest were built
on closed source tools. This can indicate that open source
program analysis tools might not be that useful by other tools,
which is perhaps due to reliability issues.

B. In retrieving important information about programs

Some important information about program structure and
behavior cannot actually be extracted by analyzing the exe-
cutable files of programs, which gives program source code
a high significance in program analysis techniques in general.
For example, without open source, it is difficult to capture the
control flow of software programs. The best way to extract
program control flow is to read all constructs in the program
that participate in changing the path of the program counter,
and that could only be achieved through parsing program
source code. Due to this particular prominence of source code,
some dynamic analysis techniques, though they dynamically
analyze program execution, were based on program source
code. However, some other dynamic techniques could derive
different aspects of program control flow, such as conditions
and repetitions, by employing certain algorithms whose goal is

TABLE I
PROGRAM ANALYSIS TECHNIQUES WITH THEIR DEPENDENT TECHNIQUES

Ref. Dependent technique(s) Open source?
[11] Unknown X
[14] Their tool: RED X
[12] Columbus/CAN, DOT X
[41 Unknown X
[18] JIVE v
[19] JDI X
[7] UMLGraph v
[38] Their tool: Amida [22] X
[21] Their tool: Amida [22] X
[23] K-tail algorithm [16] v
[39] Oberon [40] v
[41] JVM X
[42] MAS [43] X
[44] Rigi v
[15] JExtractor, Rigi [45], SCED [46] v
[24] Their work in [4] X
91 Unknown X
[26] Visual Paradigm X

to compact interactions based on specific behavioral patterns
that expose their enclosing parent blocks.

It is common for dynamic program analysis techniques to
conduct a source code instrumentation to help in gathering
information about program execution during runtime. To this
end, source code is required even if the analysis of program
will work at runtime. On the other hand, some techniques can
instrument bytecode instead of source code [47], [48], which
can effectively work with dynamic techniques and with closed
source projects.

C. In validating program analysis techniques

To validate a program analysis technique, it is required from
its developers to select proper case studies represented by real-
world projects and run their technique over them [49]. The
selection of such case studies can sometimes be positively or
negatively biased to those that can expose good impressions
about the developed technique. This bias may be intentional
by the developers or by chance. As an example of negative
biasing, developers may choose to validate their technique
against a small-sized project as a case study just because the
technique may fail if applied to larger scale ones. From a
different perspective, developers may choose a project that can
cover all (or most of) the aspects the technique’s functionality.
Generally, using projects of different types, scales, and pur-
poses is preferable to show how techniques would perform
under real circumstances.

Selecting either an open source or closed source project
for technique validation is based on the nature of the analy-
sis technique. Static techniques, for instance, always require
nothing other than open source projects for its validation as
source code represents its intrinsic input. Dynamic techniques,
on the other hand, can either be validated with the presence
or absence of source code. If the functionality of a dynamic
technique requires extracting some information from source
code, then it should necessarily be extant. If the technique

solely works on executables, then it does not matter whether
the source code is available or not. Since hybrid techniques
combine both kinds of analysis, static and dynamic, they also
presuppose source code to be available since static analysis is
part of its process.

Table II shows a list of different techniques along with their
corresponding case studies: types and names of the projects
used. We refer to each type of program analysis by a single
character, where S refers to static analysis, D refers to dynamic
analysis, and H refers to hybrid analysis. For the static and
hybrid analyses, it is ordinary to use open source projects as
case studies as they perform a source code analysis. On the
other hand, we can see that the majority of dynamic techniques
used open source projects as well as case studies, though they
can work with executables. This confirms the high usability
and usefulness of open source technology.

TABLE I
CASE STUDIES OF SAMPLE PROGRAM ANALYSIS TECHNIQUES

Ref. Analysis

[11]
[14]
[12]
[4]

[18]
[19]
[71

[38]
[21]
[23]
[39]
[41]
[42]
[44]
[15]
[24]
[9]

[26]

Case Study Open source?

JHotDraw and Monetary Access Control

21 Java library components

30K LoCs, 60K LoCs projects

A library system

Dining Philosopher’s problem

Small-sized programs

iBATIS JPetStore

jEdit, Gemini, Scheduler, LogCompactor

jEdit, Eclipse

A project of 500+ classes/interfaces with 25k LOC
Kepler + A Compiler Construction Framework

A Technical Report System (TRS)

Not mentioned

FUJABA project

FUJABA project

5 large systems and 2 small programs

Eclipse IDE, HSQLDB, Jetty web server platform
Polyshape, Animal, and Task Scheduler systems

EIEIUJUCUDUTUTTnYnY
N N N SN NN

For the techniques that were validated and evaluated through
controlled experiments, we noticed that although they are
dynamic, they were compared with results of static techniques.
For example, the work in [50] proposed a dynamic tool for
analyzing the interactions within a program while it is running,
in comparison with Eclipse that indeed requires source code
to be available. Therefore, because of this and to make the
results of that paper reproducible, authors selected an open
source project. Another experience was with the technique
proposed in [51], as they compared their tool with the one in
[50] using two open source projects of different sizes, though
both techniques rely on dynamic analysis. To summarize, open
source projects still have the superiority over closed-source
projects, especially when it comes to software experimentation
and empirical evaluation.

IV. CONCLUSION

This paper discussed the different kinds of program analysis
techniques and how open source software plays a vital role
in their development, evolution, and validation. The aim of
the paper is to show the importance of open source software
from three different aspects. First, the use of open source
tools, frameworks, and compilers to build new techniques

on top of them. Second, the use of open source software to
allow gathering as much useful information as possible from
programs. Third, the use of open source projects to validate
the outcome and performance of such techniques. Different
program analysis techniques have been presented in the paper
as examples of stakeholders of open source software, along
with a discussion about their close correlation.

For future work, we suggest two possible research direc-
tions for the purpose of enhancing the connection between
program analysis techniques and open source software. The
first direction is concerned with constructing an open source
framework for program analysis where techniques can be built
as extensions to it. It would be necessary to support both kinds
of analysis in such a framework so that new techniques can
have an option of employing only one of them or hybridizing
them together. The second direction, which can be aligned
with the former one, is to introduce an open source benchmark
that can be used for evaluating the different program analysis
techniques. Such a benchmark would indeed help to gaining
fair evaluation and comparative results.

ACKNOLEDGEMENT

The author would like to sincerely thank and appreciate his
home institution, Taiz University - Yemen, which donors him
a scholarship to pursue his graduate studies abroad.

REFERENCES

[1] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. Springer, 2015.

[2] A. Gosain and G. Sharma, “Static analysis: A survey of techniques and
tools,” in Intelligent Computing and Applications. Springer, 2015, pp.
581-591.

[3] T. Ball, “The concept of dynamic analysis,” in Software Engineering -
ESEC/FSE’99. Springer, 1999, pp. 216-234.

[4] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans-
actions on Software Engineering, vol. 32, no. 9, pp. 642-663, 2006.

[5] T. A. Ghaleb, “Toward open-source compilers in a cloud-based environ-
ment: the need and current challenges,” in 2015 International Conference
on Open Source Software Computing (OSSCOM). 1IEEE, 2015, pp. 1-6.

[6] L. C. Briand, “The experimental paradigm in reverse engineering: Role,
challenges, and limitations,” in WCRE’06. 13th Working Conference on
Reverse Engineering, 2006. 1EEE, 2006, pp. 3-8.

[71 M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever,
S. Giesecke, and W. Hasselbring, “Kieker: Continuous monitoring and
on demand visualization of Java software behavior,” in Proceedings of
the IASTED International Conference on Software Engineering. ACTA
Press, 2008.

[8] J. E. Grass, “Object-oriented design archaeology with CIA++,” Com-
puting Systems, vol. 5, no. 1, pp. 5-67, 1992.

[9]1 D. Myers, M.-A. Storey, and M. Salois, “Utilizing debug information to

compact loops in large program traces,” in /4th European Conference

on Software Maintenance and Reengineering (CSMR), 2010. IEEE,

2010, pp. 41-50.

Y.-G. Guéhéneuc and T. Ziadi, “Automated reverse-engineering of UML

v2.0 dynamic models,” in proceedings of the 6th ECOOP Workshop on

Object-Oriented Reengineering. Citeseer, 2005.

L. Lu and D.-K. Kim, “Required behavior of sequence diagrams: Se-

mantics and conformance,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 23, no. 2, p. 15, 2014.

E. Korshunova, M. Petkovic, M. van den Brand, and M. R. Mousavi,

“CPP2XMI: reverse engineering of UML class, sequence, and activity

diagrams from C++ source code,” in I3th Working Conference on

Reverse Engineering 2006 (WCRE’06). IEEE, 2006, pp. 297-298.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

T. J. Grose, G. C. Doney, and S. A. Brodsky, Mastering XMI: Java
Programming with XMI, XML and UML. John Wiley & Sons, 2002,
vol. 21.

A. Rountev, O. Volgin, and M. Reddoch, “Static control-flow analysis
for reverse engineering of UML sequence diagrams,” ACM SIGSOFT
Software Engineering Notes, vol. 31, no. 1, pp. 96-102, 2005.

T. Systd, K. Koskimies, and H. Miiller, “Shimba—an environment for
reverse engineering Java software systems,” Software: Practice and
Experience, vol. 31, no. 4, pp. 371-394, 2001.

A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” IEEE Transactions on
Computers, vol. 100, no. 6, pp. 592-597, 1972.

J. S. Carr and B. T. Kachmarck, “Generating module stubs,” Aug. 25
2015, uS Patent 9,117,177.

S. Jayaraman, B. Jayaraman et al., “Towards program execution summa-
rization: Deriving state diagrams from sequence diagrams,” in Seventh
International Conference on Contemporary Computing (IC3), 2014.
IEEE, 2014, pp. 299-305.

R. Oechsle and T. Schmitt, “JAVAVIS: Automatic program visualization
with object and sequence diagrams using the Java debug interface (JDI),”
in Software Visualization. Springer, 2002, pp. 176-190.

A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and
D. Kieselhorst, “Continuous monitoring of software services: Design
and application of the Kieker framework,” in Technical Reports by
Department of Computer Science. Kiel University, Germany, 2009.
Y. Watanabe, T. Ishio, Y. Ito, and K. Inoue, “Visualizing an execution
trace as a compact sequence diagram using dominance algorithms,”
Program Comprehension through Dynamic Analysis, p. 1, 2008.

T. Ishio, Y. Watanabe, and K. Inoue, “AMIDA: A sequence diagram
extraction toolkit supporting automatic phase detection,” in Companion
of the 30th International Conference on Software Engineering. ACM,
2008, pp. 969-970.

T. Ziadi, M. A. A. Da Silva, L.-M. Hillah, and M. Ziane, “A fully dy-
namic approach to the reverse engineering of UML sequence diagrams,”
in 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), 2011. 1EEE, 2011, pp. 107-116.

Y. Labiche, B. Kolbah, and H. Mehrfard, “Combining Static and
Dynamic Analyses to Reverse-Engineer Scenario Diagrams,” in 29th
IEEE International Conference on Software Maintenance (ICSM), 2013.
IEEE, 2013, pp. 130-139.

S. Lamprier, N. Baskiotis, T. Ziadi, and L.-M. Hillah, “CARE: a platform
for reliable Comparison and Analysis of Reverse-Engineering tech-
niques,” in 18th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2013. 1EEE, 2013, pp. 252-255.

M. Srinivasan, J. Yang, and Y. Lee, “Case studies of optimized sequence
diagram for program comprehension,” in 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1EEE, 2016, pp. 1-4.
M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Automated reverse engi-
neering of UML sequence diagrams for dynamic web applications,” in
International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW’09), 2009. 1EEE, 2009, pp. 287-294.

S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under-
standing JavaScript event-based interactions,” in Proceedings of the 36th
International Conference on Software Engineering. ~ACM, 2014, pp.
367-3717.

D. Amalfitano, A. R. Fasolino, A. Polcaro, and P. Tramontana, “The
DynaRIA tool for the comprehension of Ajax web applications by
dynamic analysis,” Innovations in Systems and Software Engineering,
vol. 10, no. 1, pp. 41-57, 2014.

V. Dehlen and J. @. Aagedal, “A uml profile for modeling mobile
information systems,” in IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 2007, pp. 296-308.
F. A. Kraemer, “Engineering android applications based on uml ac-
tivities,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 183-197.

J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: detecting
stealthy behaviors in android applications by user interface and pro-
gram behavior contradiction,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 1036-1046.
E. Kowalczyk, “Modeling app behavior from multiple artifacts,” in 2016
IEEE International Conference on Software Testing, Verification and
Validation (ICST). 1EEE, 2016, pp. 385-386.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

M. S. Andreasen, H. V. Nielsen, S. O. Schrgder, and J. Stage, “Us-
ability in open source software development: Opinions and practice,”
Information technology and control, vol. 35, no. 3, 2015.

J. Feller and B. Fitzgerald, “A framework analysis of the open source
software development paradigm,” in Proceedings of the twenty first
international conference on Information systems. Association for
Information Systems, 2000, pp. 58-69.

Y. Zhou and J. Davis, “Open source software reliability model: an
empirical approach,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4. ACM, 2005, pp. 1-6.

A. Bonaccorsi and C. Rossi, “Why open source software can succeed,”
Research policy, vol. 32, no. 7, pp. 1243-1258, 2003.

K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Ex-
tracting sequence diagram from execution trace of java program,” in
Principles of Software Evolution, Eighth International Workshop on.
IEEE, 2005, pp. 148-151.

K. Koskimies and H. Mossenbock, “Scene: Using scenario diagrams
and active text for illustrating object-oriented programs,” in Proceedings
of the 18th International Conference on Software Engineering, 1996.
IEEE, 1996, pp. 366-375.

H. Mossenbock and N. Wirth, “The programming language Oberon-2,”
Structured Programming, vol. 12, no. 4, pp. 179-196, 1991.

T. Souder, S. Mancoridis, and M. Salah, “Form: A framework for
creating views of program executions,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01). 1EEE
Computer Society, 2001, p. 612.

J. Jiang, J. Koskinen, A. Ruokonen, and T. Systa, “Constructing usage
scenarios for API redocumentation,” in /5th IEEE International Confer-
ence on Program Comprehension (ICPC’07), 2007. 1EEE, 2007, pp.
259-264.

E. Mikinen and T. Systd, “MAS—an interactive synthesizer to support
behavioral modelling in UML,” in Proceedings of the 23rd International
Conference on Software Engineering. 1EEE Computer Society, 2001,
pp. 15-24.

T. Systa, “On the relationships between static and dynamic models
in reverse engineering java software,” in Proceedings. Sixth Working
Conference on Reverse Engineering, 1999. 1EEE, 1999, pp. 304-313.
H. A. Miiller, S. R. Tilley, and K. Wong, “Understanding software
systems using reverse engineering technology perspectives from the
rigi project,” in Proceedings of the 1993 conference of the Centre
for Advanced Studies on Collaborative research: software engineering-
Volume 1. 1BM Press, 1993, pp. 217-226.

K. Koskimies, T. Systa, J. Tuomi, and T. Mannisto, “Automated support
for modeling oo software,” IEEE software, vol. 15, no. 1, pp. 87-94,
1998.

H. B. Lee and B. G. Zorn, “Bit: A tool for instrumenting java bytecodes.”
in USENIX Symposium on Internet technologies and Systems, 1997, pp.
73-82.

M. Dahm, “Byte code engineering,” in JIT99.
267-2717.

R. K. Yin, Case study research: Design and methods. Sage publications,
2013.

B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled ex-
periment for program comprehension through trace visualization,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 341-355, 2011.
F. Fittkau, S. Finke, W. Hasselbring, and J. Waller, “Comparing trace
visualizations for program comprehension through controlled experi-
ments,” in Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension. 1EEE Press, 2015, pp. 266-276.

Springer, 1999, pp.

